ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 563]
Можно ли поставить на плоскости 100 точек (сначала первую, потом
вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной
прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек,
имела ось симметрии?
Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C.
Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.
Пусть M и N — середины оснований трапеции. Докажите, что если прямая MN перпендикулярна основаниям, то трапеция — равнобедренная.
С помощью циркуля и линейки постройте треугольник по двум углам A, B и периметру P.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|