Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 563]
Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что
из четырёх полученных отрезков можно сложить четырёхугольник,
вписанный (Разрешается, чтобы вершины четырёхугольника лежали не
только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту
трапецию.
Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.
На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как
сложить этот лист (возможно, в несколько раз), чтобы определить, является ли
исходный четырёхугольник ромбом.
Поля клетчатой доски размером 8×8 будем по очереди закрашивать в красный
цвет так, чтобы после закрашивания каждой следующей клетки фигура, состоящая
из закрашенных клеток, имела ось симметрии. Покажите, как можно, соблюдая это
условие, закрасить
а) 26;
б) 28 клеток.
(В качестве ответа расставьте на тех клетках, которые должны быть закрашены,
числа от 1 до 26 или до 28 в том порядке, в котором проводилось закрашивание.)
В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по
одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 563]