ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 345]      



Задача 103936

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4-
Классы: 8,9,10

Точки A1, B1, C1 – середины сторон правильного треугольника ABC. Три параллельные прямые, проходящие через A1, B1, C1, пересекают, соответственно, прямые B1C1, C1A1, A1B1 в точках A2, B2, C2. Доказать, что прямые AA2, BB2, CC2 пересекаются в одной точке, лежащей на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 107980

Темы:   [ Разбиения на пары и группы; биекции ]
[ Симметрия помогает решить задачу ]
[ Задачи на движение ]
Сложность: 4-
Классы: 7,8,9

Автор: Ботин Д.А.

Придворный астролог царя Гороха называет время суток хорошим, если на часах с центральной секундной стрелкой при мгновенном обходе циферблата по ходу часов минутная стрелка встречается после часовой и перед секундной. Какого времени в сутках больше: хорошего или плохого? (Стрелки часов движутся с постоянной скоростью.)

Прислать комментарий     Решение

Задача 108681

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9

Точки P1, P2, ..., Pn–1 делят сторону BC равностороннего треугольника ABC на n равных частей:  BP1 = P1P2 = ... = Pn–lC.  Точка M выбрана на стороне AC так, что  AM = BP1.

Докажите, что  ∠AP1M + ∠AP2M + ... + ∠APn–1M = 30°,  если
  а)  n = 3;
  б) n – произвольное натуральное число.

Прислать комментарий     Решение

Задача 109647

Темы:   [ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Композиции поворотов ]
[ Поворот помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9,10

Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)
Прислать комментарий     Решение


Задача 115902

Темы:   [ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC  AB – BC = .  Пусть M – середина стороны AC, а BN – биссектриса.  Докажите, что  ∠BMC + ∠BNC = 90°.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 345]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .