Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 298]
|
|
Сложность: 3 Классы: 7,8,9
|
На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?
На плоскости даны пять точек, из которых никакие три не лежат на одной прямой.
Докажите, что некоторые четыре из этих точек являются вершинами выпуклого четырёхугольника.
|
|
Сложность: 3+ Классы: 9,10
|
На плоскости дано несколько прямых (больше одной), никакие две из которых не параллельны.
Докажите, что либо найдётся точка, через которую проходят ровно две из данных прямых, либо все прямые проходят через одну точку.
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости нарисовано несколько точек. Докажите, что можно провести прямую так, чтобы расстояния от всех точек до неё были различными.
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите все конечные множества точек на плоскости, обладающие таким свойством: никакие три точки множества не лежат на одной прямой и вместе с каждыми тремя точками данного множества ортоцентр треугольника, образованного этими точками, также принадлежит данному множеству.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 298]