ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 298]      



Задача 66415

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

Незнайка утверждает, что он может провести на плоскости 4 прямые так, чтобы их суммарное количество точек пересечения равнялось пяти и 5 прямых так, чтобы их суммарное количество точек пересечения равнялось четырем. Прав ли он?
Прислать комментарий     Решение


Задача 79279

Тема:   [ Системы точек ]
Сложность: 3
Классы: 8

На прямой расположено 100 точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Прислать комментарий     Решение


Задача 115997

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Многоугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

Прислать комментарий     Решение

Задача 116146

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8,9

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

Прислать комментарий     Решение

Задача 116391

Темы:   [ Системы точек ]
[ Геометрические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек  (A, B)  назовём необычной, если A – самая дальняя от B отмеченная точка, а B – ближайшая к A отмеченная точка (не считая самой точки A). Какое наибольшее возможное количество необычных пар могло получиться у Пети?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .