Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 330]
|
|
Сложность: 4- Классы: 10,11
|
Точки M, N, K – середины рёбер соответственно AB, BC,
DD1 параллелепипеда ABCDA1B1C1D1.
а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
в) В каком отношении эта плоскость делит объём параллелепипеда?
В трапеции ABCD с боковыми сторонами AB = 8 и CD = 5 биссектриса угла B пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла D пересекает те же две биссектрисы в точках L и K, причём точка L лежит на основании BC.
а) В каком отношении прямая MK делит сторону AB, а прямая LN – сторону AD?
б) Найдите отношение KL : MN, если LM : KN = 4 : 7.
В треугольнике ABC O – центр описанной окружности, I – центр вписанной. Прямая, проходящая через I и перпендикулярная OI, пересекает AB в точке X, а внешнюю биссектрису угла C – в точке Y. В каком отношении I делит отрезок XY?
В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что ∠BKC > 90°.
Одна из вневписанных окружностей треугольника ABC касается стороны AB и продолжений сторон CA и CB в точках C1, B1 и A1 соответственно.
Другая вневписанная окружность касается стороны AC и продолжений сторон BA и BC в точках B2, C2
и A2 соответственно. Прямые A1B1 и A2B2 пересекаются в точке P, прямые A1C1 и A2C2 – в точке Q. Докажите, что точки A, P и Q лежат на одной прямой.
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 330]