ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

Вниз   Решение


Саша спускался по лестнице из своей квартиры к другу Коле, который живет на первом этаже. Когда он спустился на несколько этажей, оказалось, что он прошёл треть пути. Когда он спустился ещё на один этаж, ему осталось пройти половину пути. На каком этаже живёт Саша?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 54688

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Концентрические окружности ]
Сложность: 3+
Классы: 8,9

Радиусы двух концентрических окружностей относятся как 1:2. Хорда большей окружности делится меньшей окружностью на три равные части. Найдите отношение этой хорды к диаметру большей окружности.

Прислать комментарий     Решение


Задача 54605

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Концентрические окружности ]
[ Диаметр, основные свойства ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин всех хорд данной окружности, равных данному отрезку.
Прислать комментарий     Решение


Задача 111707

Темы:   [ Касающиеся окружности ]
[ Концентрические окружности ]
[ Симметрия и построения ]
[ Окружности (построения) ]
Сложность: 4-
Классы: 8,9

Для данной пары окружностей постройте две концентрические окружности, каждая из которых касается двух данных. Сколько решений имеет задача, в зависимости от расположения окружностей?
Прислать комментарий     Решение


Задача 58323

Темы:   [ Свойства инверсии ]
[ Концентрические окружности ]
[ Радикальная ось ]
Сложность: 7
Классы: 9,10,11

Докажите, что две непересекающиеся окружности S1 и S2 (или окружность и прямую) можно при помощи инверсии перевести в пару концентрических окружностей.
Прислать комментарий     Решение


Задача 116288

Темы:   [ Признаки и свойства касательной ]
[ ГМТ - окружность или дуга окружности ]
[ Концентрические окружности ]
Сложность: 3
Классы: 8,9

Через каждую точку A , лежащую на данной окружности, проводится касательная и на ней откладывается отрезок AM , равный данному. Найдите геометрическое место точек M .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .