ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 222]      



Задача 64414

Темы:   [ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+

Докажите, что прямая Эйлера треугольника ABC (см. задачу 55595) проходит через центр окружности девяти точек (см. задачу 52511).

Прислать комментарий     Решение

Задача 65372

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Ортоцентр и ортотреугольник ]
[ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

В неравнобедренном прямоугольном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно. Докажите, что прямые AHc, CHa пересекаются на средней линии треугольника ABC.

Прислать комментарий     Решение

Задача 115732

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Пересекающиеся окружности ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 3+
Классы: 8,9,10,11

Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.

Прислать комментарий     Решение

Задача 64872

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Окружности ω1 и ω2, касающиеся внешним образом в точке L, вписаны в угол BAC. Окружность ω1 касается луча AB в точке E, а окружность ω2 – луча AC в точке M. Прямая EL пересекает повторно окружность ω2 в точке Q. Докажите, что  MQ || AL.

Прислать комментарий     Решение

Задача 64873

Темы:   [ Общая касательная к двум окружностям ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

В угол вписаны непересекающиеся окружности ω1 и ω2. Рассмотрим все такие пары параллельных прямых l1 и l2, что l1 касается ω1, l2 касается ω21, ω2 находятся между l1 и l2). Докажите, что средние линии всех трапеций, образованных прямыми l1, l2 и сторонами данного угла, касаются фиксированной окружности.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .