ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 148]      



Задача 102462

Темы:   [ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
[ Пятиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

В выпуклом пятиугольнике ABCDE диагонали AC и EC являются биссектрисами углов при вершинах A и E соответственно,  ∠B = 125°,  ∠D = 55°,  а площадь пятиугольника ABCDE равна 14. Найдите площадь треугольника ACE.

Прислать комментарий     Решение

Задача 105086

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь многоугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь трапеции ]
[ Геометрия на клетчатой бумаге ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 9,10,11

На бумаге "в клеточку" нарисован выпуклый многоугольник M, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри M, равна сумме длин горизонтальных отрезков линий сетки внутри M.

Прислать комментарий     Решение

Задача 66681

Темы:   [ Разрезания (прочее) ]
[ Правильные многоугольники ]
[ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10,11

Автор: Белухов Н.

Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.

Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.

Прислать комментарий     Решение

Задача 66970

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Площадь четырехугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10,11

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.
Прислать комментарий     Решение


Задача 111915

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Угол B при вершине равнобедренного треугольника ABC равен 120°. Из вершины B выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания AC в точках P и Q, попали на боковые стороны в точки M и N (см. рис.). Докажите, что площадь треугольника PBQ равна сумме площадей треугольников AMP и CNQ.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .