Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]
|
|
Сложность: 4 Классы: 9,10,11
|
Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)
|
|
Сложность: 5+ Классы: 9,10,11
|
Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).
На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой AN = BN. Докажите, что точки A, B, M, N лежат на одной
окружности.
|
|
Сложность: 3+ Классы: 7,8,9
|
Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч
соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма
времён, необходимых каждому из гномов на путь от своего дома до этого места
(по прямой), была наименьшей?
|
|
Сложность: 3+ Классы: 7,8,9
|
Впишите в данный полукруг правильный треугольник наибольшего периметра.
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]