Страница:
<< 100 101 102 103
104 105 106 >> [Всего задач: 1221]
В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с
разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?
Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число a1b1c1, сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай a1 = 0 допускается.
Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,
|
|
Сложность: 3+ Классы: 10,11
|
Точка
A расположена на расстоянии 50 см от центра круга радиуса 1 см.
Разрешается точку
A отразить симметрично относительно произвольной прямой,
пересекающей круг; полученную точку отразить симметрично относительно любой
прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку
A
можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть S(x) – сумма цифр натурального числа x.
Решите уравнение x + S(x) = 2001.
Страница:
<< 100 101 102 103
104 105 106 >> [Всего задач: 1221]