ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 266]      



Задача 65945

Темы:   [ Обыкновенные дроби ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Известно, что  1/a1/b = 1/a+b.  Докажите, что  1/a²1/b² = 1/ab.

Прислать комментарий     Решение

Задача 79481

Темы:   [ Уравнения высших степеней (прочее) ]
[ Замена переменных ]
[ Разложение на множители ]
Сложность: 3
Классы: 11

Решить уравнение  

Прислать комментарий     Решение

Задача 97944

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

Прислать комментарий     Решение

Задача 98085

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Докажите, что произведение 99 дробей     где  k = 2, 3, ..., 100,  больше ⅔.

Прислать комментарий     Решение

Задача 98336

Темы:   [ Уравнения в целых числах ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Разложение на множители ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 7,8,9

Квадрат разрезали на 25 квадратиков, из которых ровно у одного сторона имеет длину, отличную от 1 (у каждого из остальных сторона равна 1).
Найдите площадь исходного квадрата.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .