Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 266]
|
|
Сложность: 3+ Классы: 10,11
|
Решите в натуральных числах уравнение: x³ + y³ + 1 = 3xy.
|
|
Сложность: 3+ Классы: 7,8,9
|
В десятичной записи числа – 36 цифр. Разрешается разбить его на группы по 6 цифр в каждой и как-нибудь переставить эти группы. Известно, что число, полученное при одной из перестановок, в 7 раз больше числа, полученного при другой перестановке. Докажите, что большее из этих чисел делится на 49.
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите наименьшее натуральное число, десятичная запись квадрата которого оканчивается на 2016.
|
|
Сложность: 3+ Классы: 9,10,11
|
Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что a1 = b1, a2 : b2 = 2 и
a4 : b4 = 8. Чему может быть равно отношение a3 : b3?
Пусть N – чётное число, которое не кратно 10. Найдите цифру десятков числа N20.
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 266]