ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На доске написаны четыре попарно различных целых числа, модуль каждого из которых больше миллиона. Известно, что не существует натурального числа, большего 1, на которое бы делилось каждое из четырёх написанных чисел. Петя записал в тетрадку шесть попарных сумм этих чисел, разбил эти шесть сумм на три пары и перемножил числа в каждой паре. Могли ли все три произведения оказаться равными?

Вниз   Решение


Автор: Петров Ф.

В стране есть  n > 1  городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города X подсчитал количество таких нумераций всех городов числами от 1 до n, что на любом авиамаршруте, начинающемся в X, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 127]      



Задача 87121

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Цилиндр ]
Сложность: 3
Классы: 10,11

Найдите высоту и радиус основания цилиндра наибольшего объёма, вписанного в сферу радиуса R .
Прислать комментарий     Решение


Задача 87122

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Площадь сечения ]
Сложность: 3
Классы: 8,9

Сторона основания ABC правильной пирамиды PABC равна a , боковое ребро равно b . На каком расстоянии от прямой BC следует провести сечение пирамиды, параллельное рёбрам BC и PA , чтобы площадь его была наибольшей из возможных?
Прислать комментарий     Решение


Задача 87123

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Тетраэдр (прочее) ]
Сложность: 3
Классы: 8,9

Ребро AB тетраэдра ABCD является диагональю основания четырёхугольной пирамиды, ребро CD параллельно другой диагонали этого основания, и концы его лежат на боковых рёбрах пирамиды. Найдите наименьший возможный объём пирамиды, если объём тетраэдра равен V .
Прислать комментарий     Решение


Задача 87124

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Конус ]
Сложность: 3
Классы: 8,9

Конус описан около куба следующим образом: четыре вершины куба лежат в плоскости основания конуса, а четыре другие вершины – на его боковой поверхности. Какой наименьший объём может иметь такой конус, если ребро куба равно a ?
Прислать комментарий     Решение


Задача 87125

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 8,9

В сферу радиуса R вписана правильная четырёхугольная пирамида. Каков наибольший возможный объём этой пирамиды?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .