ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 302]      



Задача 87580

Темы:   [ Куб ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Какие углы образует диагональ куба с его гранями?
Прислать комментарий     Решение


Задача 98323

Темы:   [ Куб ]
[ Метод координат в пространстве (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 10,11

Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер  a, b, c  этого куба.

Прислать комментарий     Решение

Задача 98472

Темы:   [ Куб ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 9,10,11

На двух противоположных гранях игрального кубика нарисовано по одной точке, на двух других противоположных – по две точки, и на двух оставшихся – по три точки. Из восьми таких кубиков сложили куб 2×2×2 и посчитали суммарное число точек на каждой из его шести граней.
Могли ли получиться шесть последовательных чисел?

Прислать комментарий     Решение

Задача 103835

Темы:   [ Куб ]
[ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
Сложность: 3
Классы: 7

Из квадрата 5×5 вырезали центральную клетку. Разрежьте получившуюся фигуру на две части, в которые можно завернуть куб 2×2×2.
Прислать комментарий     Решение


Задача 103892

Темы:   [ Куб ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 7,8

Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .