Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть Tα(x, y, z) ≥ Tβ(x, y, z) для всех неотрицательных x, y, z. Докажите, что
Определение многочленов Tα смотри в задаче
61417, про показатели смотри в справочнике.
|
|
Сложность: 3+ Классы: 6,7,8
|
Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?
|
|
Сложность: 4 Классы: 7,8,9
|
Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?
[Неравенство Мюрхеда]
|
|
Сложность: 5- Классы: 10,11
|
Пусть α = (α1, ..., αn) и β = (β1, ..., βn) – два набора показателей с равной суммой.
Докажите, что, если α ≠ β, то при всех неотрицательных x1, ..., xn выполняется неравенство Tα(x1, ..., xn) ≥ Tβ(x1, ..., xn).
Определение многочленов Tα
смотри в задаче 61417,
определение сравнения для показателей можно найти в справочнике.
|
|
Сложность: 4 Классы: 8,9,10
|
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день
соревнований не изменяется.)
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]