ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям? ![]() ![]() а) Существует ли последовательность натуральных чисел a1, a2, a3, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и an ≤ n10 при любом n? б) Тот же вопрос, если an ≤ n ![]() ![]() ![]() Объединение нескольких кругов имеет площадь 1. Доказать, что из них можно выбрать несколько попарно непересекающихся кругов, сумма площадей которых больше ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 138]
.
Докажите, что при любом натуральном n
Найдите сумму 1·1! + 2·2! + 3·3! + … + n·n!.
Можно ли в записи 2013² – 2012² – ... – 2² – 1² некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?
Докажите равенство 1 – 1/2 + 1/3 – 1/4 + ... + 1/199 – 1/200 = 1/101 + 1/102 + ... + 1/200.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 138] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |