Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 1111]
|
|
Сложность: 3+ Классы: 7,8,9
|
У Алёны есть мобильный телефон, заряда аккумулятора которого хватает на 6 часов разговора или 210 часов ожидания. Когда Алёна садилась в поезд, телефон был полностью заряжен, а когда она выходила из поезда, телефон разрядился. Сколько времени она ехала на поезде, если известно, что Алёна говорила по телефону ровно половину времени поездки?
|
|
Сложность: 3+ Классы: 7,8,9
|
На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?
|
|
Сложность: 3+ Классы: 7,8,9
|
В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду успешной, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире?
|
|
Сложность: 3+ Классы: 7,8,9
|
Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)
Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 1111]