ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107]      



Задача 110239

Темы:   [ Построения на проекционном чертеже ]
[ Построение сечений ]
[ Правильный тетраэдр ]
Сложность: 3
Классы: 10,11

Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HFG .
Прислать комментарий     Решение


Задача 87010

Темы:   [ Элементы пирамиды (прочее) ]
[ Объем призмы ]
[ Правильный тетраэдр ]
Сложность: 3+
Классы: 10,11


Найдите объем параллелепипеда, все грани которого - равные ромбы со стороной, равной a, и острым углом 60o.

Прислать комментарий     Решение


Задача 66249

Темы:   [ Правильные многогранники. Двойственность и взаимосвязи ]
[ Раскраски ]
[ Правильный тетраэдр ]
[ Объем помогает решить задачу ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 10,11

Грани икосаэдра окрасили в пять цветов (среди которых есть красный и синий) так, что две грани, окрашенные в один цвет, не имеют общих точек, даже вершин. Докажите, что для любой точки внутри икосаэдра сумма расстояний от нее до красных граней равна сумме расстояний до синих граней.

Прислать комментарий     Решение

Задача 97959

Темы:   [ Сфера, описанная около тетраэдра ]
[ Комбинаторная геометрия (прочее) ]
[ Правильный тетраэдр ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?

Прислать комментарий     Решение

Задача 86982

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . Точка E – середина ребра AD . Вершины M и N правильного тетраэдра MNPQ лежат на прямой ED1 , а вершины P и Q – на прямой, проходящей через точку A1 и пересекающей прямую BC в точке R . Найдите а) отношение BR:BC ; б) расстояние между серединами отрезков MN и PQ .
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .