Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]
|
|
Сложность: 3+ Классы: 8,9,10
|
На доску выписали все собственные делители некоторого составного натурального числа n, увеличенные на 1. Найдите все такие числа n, для которых числа на доске окажутся всеми собственными делителями некоторого натурального числа m.
|
|
Сложность: 3+ Классы: 7,8,9
|
В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) = a0xn + a1xn–1 + ... + an–1x + an. Положим m = min {a0, a0 + a1, ..., a0 + a1 + ... + an}.
Докажите, что P(x) ≥ mxn при x ≥ 1.
|
|
Сложность: 4- Классы: 10,11
|
Положительные числа a, b, c и d удовлетворяют условию
2(a + b + c + d) ≥ abcd. Докажите, что a² + b² + c² + d² ≥ abcd.
|
|
Сложность: 4- Классы: 9,10,11
|
Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что x > y, верно неравенство (f(x))² ≤ f(y). Докажите, что множество значений функции содержится в промежутке [0,1].
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]