Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 378]
Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям: l || BC, l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.
a и b – две данные стороны треугольника.
Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)
|
|
Сложность: 3+ Классы: 7,8,9
|
От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.
|
|
Сложность: 3+ Классы: 6,7,8
|
Разрежьте фигуру на рис. на 8 одинаковых частей.
|
|
Сложность: 3+ Классы: 6,7,8
|
Разрежьте фигуру на рис. на 8 одинаковых частей.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 378]