ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 378]      



Задача 98610

Темы:   [ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Имеется 100 палочек, из которых можно сложить 100-угольник.
Может ли случиться, что ни из какого меньшего числа этих палочек нельзя сложить многоугольник?

Прислать комментарий     Решение

Задача 107608

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенства с площадями ]
[ Ромбы. Признаки и свойства ]
[ Площадь треугольника (через высоту и основание) ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Прямоугольник ABCD  (AB = a,  BC = b)  сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что  S < ¾ ab.

Прислать комментарий     Решение

Задача 108049

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Построение треугольников по различным точкам ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

На окружности даны точки K и L. Постройте такой треугольник ABC, что KL является его средней линией, параллельной AB, и при этом точка C и точка пересечения медиан треугольника ABC лежат на данной окружности.

Прислать комментарий     Решение

Задача 108071

Темы:   [ Неравенства с площадями ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Ромбы. Признаки и свойства ]
[ Площадь треугольника (через высоту и основание) ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Прямоугольник ABCD с площадью 1 сложили по прямой так, что точка C совпала с A.
Докажите, что площадь получившегося пятиугольника меньше ¾.

Прислать комментарий     Решение

Задача 108073

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Признаки подобия ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .