Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]
Дан произвольный треугольник ABC. Постройте прямую, проходящую через
вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых
равны.
В выпуклом четырёхугольнике ABCD O – точка пересечения диагоналей, а M – середина стороны BC. Прямые MO и AD пересекаются в точке E. Докажите, что AE : ED = SABO : SCDO.
|
|
Сложность: 4 Классы: 9,10,11
|
На биссектрисе AA1 треугольника ABC выбрана точка X. Прямая BX пересекает сторону AC в точке B1, а прямая CX пересекает сторону AB в точке C1. Отрезки A1B1 и CC1 пересекаются в точке P, а отрезки A1C1 и BB1 пересекаются в точке Q. Докажите, что углы PAC и QAB равны.
|
|
Сложность: 4 Классы: 6,7,8
|
Максим сложил на столе из 9 квадратов и 19 равносторонних треугольников (не накладывая их друг на друга) многоугольник. Мог ли периметр этого многоугольника оказаться равным 15 см, если стороны всех квадратов и треугольников равны 1 см?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.
Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]