ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Волчкевич М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 67050

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

Прислать комментарий     Решение

Задача 109503

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства параллелограмма ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

В треугольник ABC с прямым углом C вписана окружность, касающаяся сторон AC, BC и AB в точках M, K и N соответственно. Через точку K провели прямую, перпендикулярную отрезку MN. Она пересекла катет AC в точке X. Докажите, что  CK = AX.

Прислать комментарий     Решение

Задача 115903

Темы:   [ Пересекающиеся окружности ]
[ Окружности (построения) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.

Прислать комментарий     Решение

Задача 116069

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9

Дан равнобедренный треугольник ABC с основанием AC. H – точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так, что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 116175

Темы:   [ Векторы помогают решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4-
Классы: 9,10,11

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .