Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 39]
В треугольнике ABC точка M – середина стороны AC,
точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что BO = BP.
Найдите отношение OM : PC.
|
|
Сложность: 3 Классы: 8,9,10,11
|
На клетчатой бумаге нарисовали треугольник, один из углов которого равен $45^{\circ}$ (см.рис.). Найдите значения остальных углов.
|
|
Сложность: 3+ Классы: 9,10
|
Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.
Один угол треугольника равен 60°, а лежащая против этого угла сторона равна трети периметра треугольника.
Докажите, что данный треугольник равносторонний.
|
|
Сложность: 3+ Классы: 8,9,10
|
Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K.
Докажите, что расстояние от точки O до прямой MK равно половине гипотенузы.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 39]