ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Толпыго А.К.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



Задача 109199

Темы:   [ Алгебраические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
[ Неравенство Иенсена ]
[ Выпуклость и вогнутость (прочее) ]
[ Теоремы о среднем значении ]
[ Неравенство Коши ]
Сложность: 5-
Классы: 8,9,10

Положительные числа х1, ..., хk удовлетворяют неравенствам  
  а) Докажите, что  k > 50.
  б) Построить пример таких чисел для какого-нибудь k.
  в) Найти минимальное k, для которого пример возможен.

Прислать комментарий     Решение

Задача 66202

Темы:   [ Рациональные и иррациональные числа ]
[ Итерации ]
[ Двоичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 5
Классы: 10,11

Дано иррациональное число α,  0 < α < ½.  По нему определяется новое число α1 как меньшее из двух чисел 2α и  1 – 2α.  По этому числу аналогично определяется α2, и так далее.
  а) Докажите, что  αn < 3/16  для некоторого n .
  б) Может ли случиться, что  αn > 7/40  при всех натуральных n?

Прислать комментарий     Решение

Задача 67257

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Арифметические функции (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Для произвольного числа $x$ рассмотрим сумму $$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$ Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Прислать комментарий     Решение


Задача 67260

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Арифметические функции (прочее) ]
Сложность: 5
Классы: 9,10,11

Дано натуральное число $n$. Для произвольного числа $x$ рассмотрим сумму $$ Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\cdots+\left\lfloor\frac{x}{10^{n}}\right\rfloor . $$ Найдите разность $Q\left(10^{n}\right)-Q\left(10^{n}-1\right)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Прислать комментарий     Решение


Задача 67263

Темы:   [ Теорема косинусов ]
[ Длины сторон (неравенства) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 10,11

Даны пять точек, расстояние между любыми двумя из них больше 2. Верно ли, что расстояние между какими-то двумя из них больше 3, если эти 5 точек расположены

a) на плоскости;

б) в пространстве?
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .