Страница:
<< 1 2 [Всего задач: 10]
Четырёхугольник ABCD вписан в окружность с диаметром AC. Точки K и M – проекции вершин A и C соответственно на прямую BD. Через точку K проведена прямая, параллельная BC и пересекающая AC в точке P. Докажите, что угол KPM – прямой.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. Окружность, проходящая через вершину B и центр O его описанной окружности, вторично пересекает стороны BC и BA в точках P и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на прямой AC.
|
|
Сложность: 4- Классы: 9,10,11
|
На стороне BC параллелограмма ABCD (∠A < 90°) отмечена точка T так, что треугольник ATD – остроугольный. Пусть O1, O2 и O3 – центры описанных окружностей треугольников ABT,
DAT и CDT соответственно (см. рисунок).
Докажите, что ортоцентр треугольника
O1O2O3 лежит на прямой
AD.
|
|
Сложность: 5- Классы: 9,10,11
|
В параллелограмме
ABCD на диагонали
AC отмечена точка
K . Окружность
s1
проходит через точку
K и касается
прямых
AB и
AD , причём вторая точка пересечения
s1
с диагональю
AC лежит на отрезке
AK . Окружность
s2
проходит через точку
K и касается прямых
CB и
CD ,
причём вторая точка пересечения
s2
с диагональю
AC
лежит на отрезке
KC . Докажите, что при всех положениях
точки
K на диагонали
AC прямые, соединяющие центры окружностей
s1
и
s2
, будут параллельны между собой.
|
|
Сложность: 5 Классы: 9,10,11
|
Даны две окружности, касающиеся внутренним образом
в точке
N . Касательная к внутренней окружности,
проведённая в точке
K , пересекает внешнюю окружность
в точках
A и
B . Пусть
M – середина дуги
AB ,
не содержащей точку
N . Докажите, что радиус окружности,
описанной около треугольника
BMK , не зависит от выбора
точки
K на внутренней окружности.
Страница:
<< 1 2 [Всего задач: 10]