ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

Вниз   Решение


По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 115504  (#2010.10.1)

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 8,9,10

Известно, что сумма любых двух из трёх квадратных трёхчленов  x² + ax + bx² + cx + dx² + ex + f  не имеет корней.
Может ли сумма всех этих трёхчленов иметь корни?

Прислать комментарий     Решение

Задача 115505  (#2010.10.2)

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дана трапеция ABCD с основаниями  AD = a  и  BC = b.  Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.

Прислать комментарий     Решение

Задача 115506  (#2010.10.3)

Темы:   [ Обратные тригонометрические функции ]
[ Тождественные преобразования (тригонометрия) ]
[ Итерации ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?

Прислать комментарий     Решение

Задача 116426  (#2010.10.4)

Темы:   [ Десятичная система счисления ]
[ Треугольник Паскаля и бином Ньютона ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?

Прислать комментарий     Решение

Задача 115508  (#2010.10.5)

Темы:   [ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема косинусов ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9,10

В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .