ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На сторонах BC, CA, AB треугольника ABC взяты точки X, Y, Z так, что прямые AX, BY, CZ пересекаются в одной точке O. Докажите, что из отношений  OA : OX, OB : OY, OC : OZ по крайней мере одно не больше 2 и одно не меньше 2.

Вниз   Решение


Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 116426  (#2010.10.4)

Темы:   [ Десятичная система счисления ]
[ Треугольник Паскаля и бином Ньютона ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?

Прислать комментарий     Решение

Задача 115508  (#2010.10.5)

Темы:   [ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема косинусов ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9,10

В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.

Прислать комментарий     Решение

Задача 115509  (#2010.10.6)

Темы:   [ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Перестройки ]
[ Доказательство от противного ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5+
Классы: 9,10,11

На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых  n + 1  точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.

Прислать комментарий     Решение

Задача 115510  (#2010.11.1)

Темы:   [ Обыкновенные дроби ]
[ Монотонность и ограниченность ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 6,7,8,9,10,11

Какое наибольшее значение может принимать выражение     где a, b, c – попарно различные ненулевые цифры?

Прислать комментарий     Решение

Задача 115511  (#2010.11.2)

Темы:   [ Объем круглых тел ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 3
Классы: 10,11

В квадратной песочнице, засыпанной ровным слоем песка высотой 1, Маша и Паша делали куличи при помощи цилиндрического ведёрка высоты 2. У Маши все куличи удались, а у Паши — рассыпались и превратились в конусы той же высоты. В итоге весь песок ушёл на куличи, поставленные на дне песочницы отдельно друг от друга. Чьих куличей оказалось в песочнице больше: Машиных или Пашиных?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .