ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах BC, CA, AB треугольника ABC взяты точки X, Y, Z так, что прямые AX, BY, CZ пересекаются в одной точке O. Докажите, что из отношений OA : OX, OB : OY, OC : OZ по крайней мере одно не больше 2 и одно не меньше 2. ![]() ![]() Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26? ![]() ![]() |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых n + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.
Какое наибольшее значение может принимать выражение
Страница: << 1 2 3 4 5 >> [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |