Страница: 1 [Всего задач: 5]
Задача
78256
(#1)
|
|
Сложность: 4- Классы: 8,9,10
|
Стороны произвольного выпуклого многоугольника покрашены снаружи. Проводится
несколько диагоналей многоугольника, так, что никакие три не пересекаются в
одной точке. Каждая из этих диагоналей тоже покрашена с одной стороны, т.е. с
одной стороны отрезка проведена узкая цветная полоска. Доказать, что хотя бы
один из многоугольников, на которые разбит диагоналями исходный многоугольник,
весь покрашен снаружи.
Задача
78257
(#2)
|
|
Сложность: 4- Классы: 8,9
|
В квадрате
ABCD на стороне
AB взята точка
P, на стороне
BC — точка
Q, на стороне
CD — точка
R, на стороне
DA —
S; оказалось, что
фигура
PQRS — прямоугольник. Доказать, что тогда прямоугольник
PQRS —
либо квадрат, либо обладает тем свойством, что его стороны параллельны
диагоналям квадрата.
Задача
78258
(#3)
|
|
Сложность: 4 Классы: 8,9,10
|
Доказать, что среди любых 39 последовательных натуральных чисел обязательно
найдётся такое, у которого сумма цифр делится на 11.
Задача
78259
(#4)
|
|
Сложность: 4- Классы: 8,9
|
Дана таблица 4×4 клетки, в некоторых клетках которой поставлено по
звёздочке. Показать, что можно так расставить семь звёздочек, что при вычёркивании любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда была бы хотя бы одна звёздочка. Доказать, что если звёздочек меньше, чем семь, то всегда можно так вычеркнуть две строки и два столбца, что все оставшиеся клетки будут пустыми.
Задача
78260
(#5)
|
|
Сложность: 3+ Классы: 7,8,9
|
Доказать, что не существует целых чисел a, b, c, d, удовлетворяющих равенствам:
abcd – a = 1961,
abcd – b = 961,
abcd – c = 61,
abcd – d = 1.
Страница: 1 [Всего задач: 5]