Страница: 1
2 >> [Всего задач: 8]
Задача
109823
(#05.5.10.1)
|
|
Сложность: 4 Классы: 8,9,10
|
Найдите наименьшее натуральное число, не представимое в виде , где a, b, c, d – натуральные числа.
Задача
109824
(#05.5.10.2)
|
|
Сложность: 4 Классы: 8,9,10
|
В таблице 2×n расставлены положительные числа так, что в каждом из n столбцов сумма двух чисел равна 1.
Докажите, что можно вычеркнуть по одному числу в каждом столбце так, чтобы в каждой строке сумма оставшихся чисел не превосходила n+1/4.
Задача
109825
(#05.5.10.3)
|
|
Сложность: 5- Классы: 8,9,10,11
|
На оборотных сторонах 2005 карточек написаны различные
числа (на каждой по одному). За один вопрос разрешается указать на любые три
карточки и узнать множество чисел, написанных на них. За какое наименьшее
число вопросов можно узнать, какие числа записаны на каждой карточке?
Задача
109826
(#05.5.10.4)
|
|
Сложность: 5 Классы: 9,10,11
|
Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон
AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.
Задача
109827
(#05.5.10.5)
|
|
Сложность: 4 Классы: 7,8,9,10
|
В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?
Страница: 1
2 >> [Всего задач: 8]