Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]
Задача
109952
(#98.4.9.3)
|
|
Сложность: 4 Классы: 8,9
|
Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?
Задача
109953
(#98.4.9.4)
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется квадрат клетчатой бумаги размером 102×102 клетки
и связная фигура неизвестной формы, состоящая из 101 клетки. Какое
наибольшее число таких фигур можно с гарантией вырезать из этого
квадрата? Фигура, составленная из клеток, называется связной, если
любые две ее клетки можно соединить цепочкой ее клеток, в которой
любые две соседние клетки имеют общую сторону.
Задача
109954
(#98.4.9.5)
|
|
Сложность: 3+ Классы: 8,9,10
|
Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.
Могут ли значения этих трёхчленов в некоторой положительной целой точке равняться 19 и 98?
Задача
109955
(#98.4.9.6)
|
|
Сложность: 4 Классы: 7,8,9
|
На концах клетчатой полоски размером
1×101
клеток стоят
две фишки: слева – фишка первого игрока, справа – второго. За ход
разрешается сдвинуть свою фишку в направлении противоположного края
полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать
через фишку соперника, но запрещается ставить свою фишку на одну
клетку с ней. Выигрывает тот, кто первым достигнет противоположного
края полоски. Кто выиграет при правильной игре: тот, кто ходит первым,
или его соперник?
Задача
109956
(#98.4.9.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]