Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 48]
Задача
64782
(#11.6)
|
|
Сложность: 4- Классы: 10,11
|
Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере.
Задача
64624
(#9.7)
|
|
Сложность: 4- Классы: 8,9,10
|
Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?
Задача
64632
(#10.7)
|
|
Сложность: 4- Классы: 10,11
|
По кругу стоят 101000 натуральных чисел. Между каждыми двумя соседними числами записали их наименьшее общее кратное.
Могут ли эти наименьшие общие кратные образовать 101000 последовательных чисел (расположенных в каком-то порядке)?
Задача
64640
(#11.7)
|
|
Сложность: 4- Классы: 10,11
|
Дан многочлен P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0, у которого каждый коэффициент ai принадлежит отрезку [100, 101].
При каком минимальном натуральном n у такого многочлена может найтись действительный корень?
Задача
64767
(#9.7)
|
|
Сложность: 4 Классы: 8,9,10
|
В республике математиков выбрали число α > 2 и выпустили монеты достоинствами в 1 рубль, а также в αk рублей при каждом натуральном k. При этом α было выбрано так, что достоинства всех монет, кроме самой мелкой, иррациональны. Могло ли оказаться, что любую сумму в натуральное число рублей можно набрать этими монетами, используя монеты каждого достоинства не более 6 раз?
Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 48]