ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 7852]      



Задача 116011

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 7,8,9,10

Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

Прислать комментарий     Решение

Задача 116021

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наибольшее натуральное n, при котором  n200 < 5300.

Прислать комментарий     Решение

Задача 116022

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC,  AB = BC.
Найдите отношение  KM : BD.

Прислать комментарий     Решение

Задача 116023

Темы:   [ Признаки делимости на 3 и 9 ]
[ Доказательство от противного ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?

Прислать комментарий     Решение

Задача 116055

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

Вдоль дорожки между домиками Незнайки и Синеглазки росли в ряд цветы: 15 пионов и 15 тюльпанов вперемешку. Отправившись из дома в гости к Незнайке, Синеглазка поливала все цветы подряд. После 10-го тюльпана вода закончилась, и 10 цветов остались не политыми. Назавтра, отправившись из дома в гости к Синеглазке, Незнайка собирал для неё все цветы подряд. Сорвав 6-й тюльпан, он решил, что для букета достаточно. Сколько цветов осталось расти вдоль дорожки?

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 7852]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .