ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 116376  (#1)

Темы:   [ Четность и нечетность ]
[ Принцип крайнего ]
Сложность: 3
Классы: 8,9,10

Гости за круглым столом ели изюм из корзины с 2011 изюминками. Оказалось, что каждый съел либо вдвое больше, либо на 6 меньше изюминок, чем его сосед справа. Докажите, что были съедены не все изюминки.

Прислать комментарий     Решение

Задача 116381  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые таблицы и их свойства ]
Сложность: 3
Классы: 8,9

В каждой клетке секретной таблицы n×n записана одна из цифр от 1 до 9. Из них получаются n-значные числа, записанные в строках слева направо и в столбцах сверху вниз. Петя хочет написать такое n-значное число без нулей в записи, чтобы ни это число, ни оно же, записанное задом наперед, не совпадало ни с одним из 2n чисел в строках и столбцах таблицы. В каком наименьшем количестве клеток Петя должен для этого узнать цифры?

Прислать комментарий     Решение

Задача 116382  (#3)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Прислать комментарий     Решение

Задача 116383  (#4)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8,9

Натуральные числа  a < b < c  таковы, что  b + a  делится на  b – a,  а  c + b  делится на  c – b.  Число a записывается 2011, а число b – 2012 цифрами. Сколько цифр в числе c?

Прислать комментарий     Решение

Задача 116384  (#5)

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 4-
Классы: 8,9

На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .