Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]
Задача
116646
(#11.1)
|
|
Сложность: 3- Классы: 9,10,11
|
Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n.
Задача
116541
(#9.2)
|
|
Сложность: 2 Классы: 8,9
|
Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.
Задача
116542
(#9.3)
|
|
Сложность: 3+ Классы: 8,9
|
Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.
Задача
116557
(#10.3)
|
|
Сложность: 3 Классы: 9,10
|
Даны различные натуральные числа a1, a2, ..., a14. На доску выписаны все 196 чисел вида ak + al, где 1 ≤ k, l ≤ 14. Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?
Задача
116556
(#10.2)
|
|
Сложность: 3- Классы: 9,10
|
На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]