Страница:
<< 1 2
3 4 5 >> [Всего задач: 24]
Задача
116639
(#10.2)
|
|
Сложность: 3 Классы: 8,9,10
|
На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9.
Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?
Задача
116640
(#10.3)
|
|
Сложность: 5- Классы: 8,9,10
|
Назовём компанию k-неразбиваемой, если при любом разбиении её на k групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.
Задача
116647
(#11.2)
|
|
Сложность: 4- Классы: 9,10,11
|
На стороне BC параллелограмма ABCD (∠A < 90°) отмечена точка T так, что треугольник ATD – остроугольный. Пусть O1, O2 и O3 – центры описанных окружностей треугольников ABT,
DAT и CDT соответственно (см. рисунок).
Докажите, что ортоцентр треугольника
O1O2O3 лежит на прямой
AD.
Задача
116648
(#11.3)
|
|
Сложность: 4+ Классы: 10,11
|
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
Задача
116633
(#9.4)
|
|
Сложность: 4+ Классы: 8,9,10
|
Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?
Страница:
<< 1 2
3 4 5 >> [Всего задач: 24]