Страница: 1
2 3 4 5 >> [Всего задач: 24]
Задача
116630
(#9.1)
|
|
Сложность: 3 Классы: 9,10
|
Приведённый квадратный трёхчлен P(x) таков, что многочлены P(x) и P(P(P(x))) имеют общий корень. Докажите, что P(0)P(1) = 0.
Задача
116638
(#10.1)
|
|
Сложность: 4 Классы: 8,9,10
|
В каждой клетке таблицы, состоящей из 10 столбцов и n строк, записана цифра. Известно, что для каждой строки A и любых двух столбцов найдётся строка, отличающаяся от A ровно в этих двух столбцах. Докажите, что n ≥ 512.
Задача
116646
(#11.1)
|
|
Сложность: 3- Классы: 9,10,11
|
Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n.
Задача
116631
(#9.2)
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. Окружность, проходящая через вершину B и центр O его описанной окружности, вторично пересекает стороны BC и BA в точках P и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на прямой AC.
Задача
116632
(#9.3)
|
|
Сложность: 4 Классы: 8,9,10
|
На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём
диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?
Страница: 1
2 3 4 5 >> [Всего задач: 24]