Страница: 1
2 3 >> [Всего задач: 14]
Задача
35392
(#М1326)
|
|
Сложность: 3+ Классы: 8,9,10
|
Последовательность {an} определяется правилами: a0 = 9, .
Докажите, что в десятичной записи числа a10 содержится не менее 1000 девяток.
Задача
55754
(#М1327)
|
|
Сложность: 4 Классы: 8,9
|
Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.).
Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.
Задача
98111
(#М1335)
|
|
Сложность: 4+ Классы: 8,9
|
n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
а) При каких n это возможно, если m = 9?
б) При каких n и m это возможно?
Задача
98138
(#М1346)
|
|
Сложность: 4- Классы: 10,11
|
Внутри окружности радиуса 1 расположена замкнутая ломаная (самопересекающаяся), содержащая 51 звено, причём известно, что длина каждого
звена равна . Для каждого угла этой ломаной рассмотрим треугольник, двумя сторонами которого служат звенья ломаной, образующие этот угол (таких треугольников всего 51). Докажите, что сумма площадей этих треугольников не меньше, чем утроенная площадь правильного треугольника, вписанного в окружность.
Задача
98141
(#М1347)
|
|
Сложность: 4 Классы: 7,8,9
|
Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?
Страница: 1
2 3 >> [Всего задач: 14]