ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66209  (#6)

Темы:   [ Четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9,10

Дан четырёхугольник ABCD, в котором  AC = BD = AD;  точки E и F – середины AB и CD соответственно; O – точка пересечения диагоналей четырёхугольника. Докажите, что EF проходит через точки касания вписанной окружности треугольника AOD с его сторонами AO и OD.

Прислать комментарий     Решение

Задача 66210  (#7)

Темы:   [ Вписанные и описанные окружности ]
[ Неравенства для элементов треугольника (прочее) ]
[ Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10

В треугольнике центр описанной окружности лежит на вписанной окружности.
Докажите, что отношение наибольшей стороны треугольника к наименьшей меньше 2.

Прислать комментарий     Решение

Задача 66211  (#8)

Темы:   [ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Дана трапеция ABCD с основанием AD. Центр описанной окружности треугольника ABC лежит на прямой BD.
Докажите, что центр описанной окружности треугольника ABD лежит на прямой AC.

Прислать комментарий     Решение

Задача 66212  (#9)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9,10

В прямоугольном треугольнике ABC точка C0 – середина гипотенузы AB, AA1, BB1 – биссектрисы, I – центр вписанной окружности.
Докажите, что прямые C0I и A1B1 пересекаются на высоте CH.

Прислать комментарий     Решение

Задача 66213  (#10)

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 8,9,10

На сторонах AB и BC параллелограмма ABCD выбраны точки K и L соответственно так, что  ∠AKD = ∠CLD.
Докажите, что центр описанной окружности треугольника BKL равноудален от A и C.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .