Страница: 1
2 >> [Всего задач: 7]
Задача
66701
(#1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
У Аладдина есть несколько одинаковых слитков золота, и иногда он просит джинна увеличить их количество. Джинн добавляет тысячу таких же слитков, но после этого берёт за услугу ровно половину от получившейся общей массы золота. Мог ли Аладдин оказаться в выигрыше после десяти таких просьб, если ни один слиток не пришлось распиливать?
Задача
66702
(#2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Существуют ли такие 2018 положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных 2018 дробей?
Задача
66706
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?
Задача
66708
(#4)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что
а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;
б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.
Задача
66707
(#5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих: $a - b, b - a$ или $a + b$. Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно $20a - 18b$.
Страница: 1
2 >> [Всего задач: 7]