Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 8,9,10
|
Тетрадный лист раскрасили в 23 цвета по клеткам. Пара цветов называется
хорошей, если существует две соседние клетки, закрашенные этими цветами. Каково минимальное число хороших пар?
|
|
Сложность: 3+ Классы: 7,8,9
|
Какую цифру надо поставить вместо знака "?" в числе 888...88?99...999 (восьмёрка и девятка написаны по 50 раз), чтобы оно делилось на 7?
|
|
Сложность: 3+ Классы: 7,8,9
|
Найти шесть различных натуральных чисел, произведение любых двух из которых
делится на сумму этих двух чисел.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны 1000 линейных функций: fk(x) = pkx + qk (k = 1, 2, ..., 1000). Нужно найти значение их композиции f(x) = f1(f2(f3(...f1000(x)...))) в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа p1, p2, ..., p1000, q1, q2, ..., q1000, x0.
Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 1703]