ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти все такие тройки простых чисел x, y, z, что  19x − yz = 1995.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 181]      



Задача 102810  (#14.5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 5,6,7

Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3.

Прислать комментарий     Решение

Задача 102811  (#14.6)

Темы:   [ Четность и нечетность ]
[ Обратный ход ]
Сложность: 3
Классы: 7,8

Натуральное число можно умножать на 2 и произвольным образом переставлять в нем цифры (запрещается лишь ставить 0 на первое место).
Докажите, что превратить число 1 в число 811 с помощью таких операций невозможно.

Прислать комментарий     Решение

Задача 102812  (#14.7)

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8

Найти все такие тройки простых чисел x, y, z, что  19x − yz = 1995.

Прислать комментарий     Решение

Задача 102813  (#14.8)

Темы:   [ Замощения костями домино и плитками ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Режем прямоугольник. Клетчатый прямоугольник разрезали на прямоугольники 1 х 2 (доминошки) так, что любая прямая, идущая по линиям сетки, рассекает кратное четырем число доминошек. Докажите, что длина одной из сторон делится на 4.
Прислать комментарий     Решение


Задача 30433  (#15.1)

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Игры-шутки ]
Сложность: 3-
Классы: 6,7,8

Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .