ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Уткин А.

В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке.

Вниз   Решение


На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.

ВверхВниз   Решение


Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$?

ВверхВниз   Решение


Автор: Бибиков П.

В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности.

ВверхВниз   Решение


Сколькими способами можно прочитать в таблице слово
  а)  КРОНА,
  б)  КОРЕНЬ,
начиная с буквы "K" и двигаясь вправо или вниз?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 103806  (#1)

Темы:   [ Подсчет двумя способами ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7

По кругу расставлены цифры 1, 2, 3,..., 9 в произвольном порядке. Каждые три цифры, стоящие подряд по часовой стрелке, образуют трёхзначное число. Найдите сумму всех девяти таких чисел. Зависит ли она от порядка, в котором записаны цифры?

Прислать комментарий     Решение


Задача 103807  (#2)

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7

Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

Прислать комментарий     Решение


Задача 103808  (#3)

Темы:   [ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7

Найдите хотя бы две пары натуральных чисел, для которых верно равенство  2x³ = y4.

Прислать комментарий     Решение

Задача 103809  (#4)

Темы:   [ Правило произведения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 2+
Классы: 7

Сколькими способами можно прочитать в таблице слово
  а)  КРОНА,
  б)  КОРЕНЬ,
начиная с буквы "K" и двигаясь вправо или вниз?

Прислать комментарий     Решение

Задача 103810  (#5)

Темы:   [ Подсчет двумя способами ]
[ Замощения костями домино и плитками ]
Сложность: 3-
Классы: 7

Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .