ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 103864  (#1)

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 6,7,8

В книге рекордов Гиннесса написано, что наибольшее известное простое число равно  23021377 – 1.  Не опечатка ли это?

Прислать комментарий     Решение

Задача 103865  (#2)

Темы:   [ Задачи на проценты и отношения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 7,8

Приходя в тир, игрок вносит в кассу 100 рублей. После каждого удачного выстрела количество его денег увеличивается на 10%, а после каждого промаха – уменьшается на 10%. Могло ли после нескольких выстрелов у него оказаться 80 рублей 19 копеек?

Прислать комментарий     Решение

Задача 103866  (#3)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Для постройки типового дома не хватало места. Архитектор изменил проект: убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось. Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах одинаковое число квартир.)

Прислать комментарий     Решение

Задача 103867  (#4)

Темы:   [ Наглядная геометрия ]
[ ГМТ (прочее) ]
Сложность: 3+
Классы: 6,7

Автор: Шень А.Х.

В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок).

Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.

Прислать комментарий     Решение

Задача 103868  (#5)

Темы:   [ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3-
Классы: 6,7

Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .