ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что все числа 10017, 100117, 1001117, ... делятся на 53.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



Задача 107790

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 2+
Классы: 7,8,9

Докажите, что

| x| + | y| + | z|$\displaystyle \le$| x + y - z| + | x - y + z| + |-x + y + z|,

где x, y, z — действительные числа.
Прислать комментарий     Решение

Задача 107772

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3
Классы: 7,8,9

М.В. Ломоносов тратил одну денежку на хлеб и квас. Когда цены выросли на 20%, на ту же денежку он приобретал полхлеба и квас.
Хватит ли той же денежки хотя бы на квас, если цены еще раз вырастут на 20%?

Прислать комментарий     Решение

Задача 107773

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Докажите, что все числа 10017, 100117, 1001117, ... делятся на 53.

Прислать комментарий     Решение

Задача 107784

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрический круг ]
Сложность: 3
Классы: 10,11

Известно число sin α. Какое наибольшее число значений может принимать  а) sin α/2,   б) sin α/3?
Прислать комментарий     Решение


Задача 108070

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Правильный (равносторонний) треугольник ]
[ ГМТ и вписанный угол ]
Сложность: 3
Классы: 8,9

Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с AB. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .