ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны три приведённых квадратных трехчлена:  P1(x), P2(x) и P3(x). Докажите, что уравнение  |P1(x)| + |P2(x)| = |P3(x)|  имеет не более восьми корней.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109558  (#94.5.10.1)

Темы:   [ Уравнения с модулями ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9,10

Даны три приведённых квадратных трехчлена:  P1(x), P2(x) и P3(x). Докажите, что уравнение  |P1(x)| + |P2(x)| = |P3(x)|  имеет не более восьми корней.

Прислать комментарий     Решение

Задача 109567  (#94.5.10.2)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 5-
Классы: 8,9,10

Автор: Кохась М.

На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?

Прислать комментарий     Решение

Задача 108204  (#94.5.10.3)

Темы:   [ Неравенства с медианами ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные и описанные окружности ]
Сложность: 5-
Классы: 9,10,11

Пусть a , b и c – стороны треугольника, ma , mb и mc – медианы, проведённые к этим сторонам, D – диаметр окружности, описанной около треугольника. Докажите, что

+ + 6D.

Прислать комментарий     Решение

Задача 109560  (#94.5.10.4)

Темы:   [ Раскраски ]
[ Правильные многоугольники ]
[ Задачи с ограничениями ]
Сложность: 4+
Классы: 8,9,10,11

В правильном (6n+1)-угольнике K вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.

Прислать комментарий     Решение

Задача 109561  (#94.5.10.5)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для натуральных чисел k, m и n справедливо неравенство   [k, m][m, n][n, k] ≥ [k, m, n]².

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .