ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109744  (#01.5.10.8)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 8,9,10

Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

Прислать комментарий     Решение

Задача 109731  (#01.5.11.1)

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
[ Числа Фибоначчи ]
Сложность: 5-
Классы: 8,9,10,11

  Пусть 2S – суммарный вес некоторого набора гирек. Назовём натуральное число k средним, если в наборе можно выбрать k гирек, суммарный вес которых равен S. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?

Прислать комментарий     Решение

Задача 108142  (#01.5.11.2)

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема синусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Вписанные и описанные окружности ]
Сложность: 5
Классы: 9,10,11

Даны две окружности, касающиеся внутренним образом в точке N . Касательная к внутренней окружности, проведённая в точке K , пересекает внешнюю окружность в точках A и B . Пусть M – середина дуги AB , не содержащей точку N . Докажите, что радиус окружности, описанной около треугольника BMK , не зависит от выбора точки K на внутренней окружности.
Прислать комментарий     Решение


Задача 109732  (#01.5.11.3)

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 6+
Классы: 9,10,11

На плоскости даны два таких конечных набора P1 и P2 выпуклых многоугольников, что любые два многоугольника из разных наборов имеют общую точку и в каждом из двух наборов P1 и P2 есть пара непересекающихся многоугольников. Докажите, что существует прямая, пересекающая все многоугольники обоих наборов.
Прислать комментарий     Решение


Задача 109733  (#01.5.11.4)

Темы:   [ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
[ Уравнения в целых числах ]
Сложность: 5
Классы: 9,10,11

Участникам тестовой олимпиады было предложено n вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .