ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции: |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей? б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?
Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.
Даны натуральные числа m и n. Докажите, что число 2n – 1 делится на число (2m – 1)² тогда и только тогда, когда число n делится на число m(2m – 1).
Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|