ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 109918  (#97.4.9.8)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

Прислать комментарий     Решение

Задача 109913  (#97.4.10.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
  1) проверять, равны ли выбранные два числа,
  2) складывать выбранные числа,
  3) по выбранным числам a и b находить корни уравнения  x² + ax + b = 0,  а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?

Прислать комментарий     Решение

Задача 108179  (#97.4.10.2)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Пересекающиеся окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.

Прислать комментарий     Решение

Задача 109915  (#97.4.10.3)

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Тен О.

Даны натуральные числа m и n. Докажите, что число  2n – 1  делится на число  (2m – 1)²  тогда и только тогда, когда число n делится на число  m(2m – 1).

Прислать комментарий     Решение

Задача 109916  (#97.4.10.4)

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Куб ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .